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Abstract-The use of the Legendre orthogonal polynomials provides a significant improvement in the 
robustness and simplicity of the Galerkin series expansion methods for the solution of the classical 
Nusselt integral equations. These equations describe the steady state temperature behaviour of a thermal 
regenerator. A novel, economical method is offered for Galerkin techniques for the non-symmetric case. 

INTRODUCTION 

Tm GALERKIN methods described in this paper, are 
used for the numerical solution of the integral equa- 
tion 

F(A-Q+e-“F(l)+ 
s 

‘K(S-s)F(e)da = 1 (1) 
0 

and the pair of simultaneous integral equations 

I% 
F’ (5’) = e-n F(c’) + 

s 
R (a - 5’) F(E) de (2) 

r’ 

(1 -F(C)) = e-n (1 -F’ (5)) 

(3) 

This approach was first suggested by Baclic [l] in 1985 
for the solution of the symmetric regenerator problem 
represented here by equation (1). The kernel of these 
integral equations is defined by 

K(x) = 
-iJ, Vi WU”‘) n e-x-n 

(XI-I) ‘I2 
(4) 

where iJ,(iy) is a real valued function with complex 
argument iy, where i* = - 1 and JI is the Bessel func- 
tion of the first type and of first order. Iliffe [2] and 
Hausen [3] offered a similar set of integral equations. 
These had been devised originally by Nusselt [4,5]. 

The equations describe the relationship between the 
distance variation of the packing temperature, F(C), 
for 0 < 5 < A, at the end of the hot period of thermal 
regenerator operation and the corresponding vari- 
ation F’([‘), for 0 < 5’ < A’, for the end of the cold 

period. 

It is conventional to introduce dimensionless scales, 
(see Hausen [6]) and, in particular, the length of the 
regenerator for the hot period is denoted by A, in the 

cold period by A’. These parameters were called the 
reduced length by Hausen. The corresponding dimen- 
sionless time parameters are the reducedperiod, II, for 
the hot period and II’ for the cold. 

Equations (2) and (3) deal with the general non- 
symmetric case where A # A’ and/or II # II’. The 
Galerkin treatment of this case was first attempted by 
Balic and Dragutinovic [7] in 1991. Note that equation 
(2) assumes that gas flows through the packing in the 
cold period, entering the regenerator at 5’ = A’ and 
departing at position 5’ = 0 whereas in the work of 
Iliffe [2] and Hausen [3] the equation is written with 
the gas entering at 5’ = 0 and leaving at 5’ = A’. 

Baclic’s first paper [l] uses equation (1) which 
exploits the symmetry of the case where A = A’ and 
II = II’ for which it can be shown that 

F’(A-{)+F(c) = 1. (5) 

Baker [8] describes how such integral equations are 
known as Volterra equations of the second kind. The 
Galerkin techniques are series expansion methods, in 
which we seek to approximate F(c) and F’ (5’) by 
Y(l) and Y’(c), respectively, where 

and 

y’(5’) = ,go 8j $jicr’). (7) 

The series expansion solution consists of vectors a and 
/J where a = [aa, aI, a2,. . , 4rand B = [Bo, PI, P2,. . , 
Al T. 

The series expansions (6) and (7) embody a set of 
linearly independent functions {4,(t) lj = 0, 1,2, . . , 
n}. Without loss of generality, substitution of expan- 
sion (6) into equation (1) yields 
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NOMENCLATURE 

A squsre (77 + 1) x (!I + I ) matrix, 
equation (30) 

F dimensionless solid temperature on 
[0, -t I] scale 

h vector of order 
(P7+1)=[A,o,o....,o]T 

K(< -8) kernel of integral equations 
P,(x) Legendre polynomial of degree i 

Q,(x) modified Legendre polynomial of 
degree i, equation (19) 

T solid temperature [K] 
f gas temperature [K]. 

Greek symbols 
a vector of order (N+ I), see equation 

(6) 

All other symbols are defined explicitly within the text 

B vector of order (iv+ I), see equation 

(7) 
4.i Kronecker delta = 1 if i =,j, = 0 if 

i Z.i 
i: dummy variable 
qREF thermal ratio 
A reduced length 

5 dimensionless distance from the 
regenerator entrance where 0 $ 5 < A 

n reduced period. 

Superscripts 
prime refers to the cold period 

Gn) refers to the pth cycle. 

Subscript 
in refers to the regenerator inlet. 

+ 
i 

‘K(&r)+,(s)de‘i = 1. (8) 
0 i 

The integral equation (I) can be written in more gen- 
eral terms as 

n(F(0) = 0 (9) 

which woufd then adopt the form, for 0 < i’ < A, 

f,%u’f<)) = 0 (10) 

after the substitution of expansion (6) into equation 
(1) provided Y(c) were an exact solution to the inte- 
gral equation. However, since Y(g) is only an approxi- 
mate solution, then criteria must be agreed as to how 
good a solution it might be. This manifests itself in 
the criteria used to ascertain the coefficients 
{czn ] k = 0, 1,2,. . . ,ni. In the Galerkin method, we 
seek to ~~~~~~se C?(Yf&) on the interval 0 d < < A. 
In so doing, the vector a is determined by a process 
not unlike the least squares technique. by solving the 
equations 

forj = 0, 1, 2,. , ft. This reduces to a form : 

Aa=h. (121 

4 is a square (n+ I) x (n+ I) matrix and h is a vector 
of order II -+ 1. These will be defined later. 

This is in contrast to the cotlocation method which 
has parallels with interpolation. Willmott and Knight 
[9] describe how the vector a is determined by requir- 
ing 

~(Y(~~)) = 0 (13) 

at n+ 1 distinct collocation points, {&/k = 0, I, 

2,. . , R) all on the interval 0 < & < A, 
In this paper, we propose another set of functions 

{I$, ([) ]j = 0, 1,. . . , n} to those proposed previously 
by Baclic [l] and, in particular, introduce the idea of 
using functions with two useful properties, namely 
their values he in a range which contains closely that 
occupied by F(t) and F’(<‘), and, equally important, 
they are ~F~~og~~~~. This leads to a simplification of 
the methodology. In addition, we exploit a method 
for handling the genera1 case represented by equations 
(2) and (3), previously set out by WiIImott and Knight 
f9]. In so doing, significant economies are introduced 
over the methodology set out by Badic and Dra- 
gutinovic 17) for the solution of the ~on-s~~~eiric 

problem. 

THERMAL REGENE~TOR OPERATION AND ITS 

MO~ELLING 

Heat is transferred in a regenerator from a hot gas, 
typically the combustion products from a fuel gas used 
to fire a furnace or a boiler, to a cold gas, often the 
air required for the combustion of that fuel. This is 
realised by passing the hot gas through the channels 
of a packing in which the thermal energy is then 
stored. This process continues for the duration of the 
hot period after which the cold gas passes through 
the same channels of the packing in the contraflow 
direction during the cold period when the heat is re- 
covered from the packing and the cold gas is heated up. 
In this work, we treat a cycle o~o~era~~on as consisting 
of a cold period followed by a hot period. After many 
cycles, a regenerator realises C@C or dynamic equi- 
lib~ium. 

Equation (2) relates the temperature dist~bution 
F(<‘J at the start of the coZd period at cyclic equi- 
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s +I 

P,(x)’ dx = ,2 ~ # 0. 
25-t 1 -1 

librium to that at the end of the cold period, namely 
F’(l’). Similarly, equation (3) relates the temperature 
distribution at the beginning of the hot period of an 
equilibrium cycle to that of the finish of the period. 
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(18) 

The property 
This is the model which is used in this work. The 

assumptions embodied there are described in detail by 
Schmidt and Willmott [lo] and also by Hausen [ 111 in 
his classical treatise on this subject. In essence, this is 
a so-called linear model in which it is assumed that 
the thermophysical properties of the gas and solid 
are temperature independent, in which the inlet gas 
temperatures and the gas flow rates in each period of 
regenerator operation do not vary with time. The solid 
temperatures T(t) vary, at cyclic equilibrium, in the 
range 

-1 <P,(x) < +1 

t:, < T(5) < 4” 

means that the range for P,(x) contains closely the 
range for F(t) and F’(l), so that, combined with the 
recurrence relation (17) and the orthogonality prop- 
erty, the polynomials {P,(x) lj = 0, 1, 2,. . . , n} 
become ideal candidates as possible linear functions 
for the expansions (6) and (7). 

The Legendre polynomials are defined in terms of 
the variable x on the interval [- 1, + 1] whereas the 
regenerator model operates with the variable 4 on the 
interval [0, A]. This is overcome by use of the change 
of variable 

where t:,, and tin are the cold and hot inlet gas tem- 
peratures to the regenerator. We generate the [0, + 1] 
dimensionless temperature scales using the trans- 
formation : 

25-A 

x=T. 

This range for F(l) is exploited in our choice of the 
Legendre polynomials as linearly independent func- 
tions in the series expansions (6) and (7). 

F(S) = 
T(5) - C” 
t _t, . 

I” I” 

ORTHOGONAL POLYNOMIALS 

It will be seen that, when l = 0, then x = - 1, whereas, 
when[=h,thenx= +l. 

In order to simplify the notation, we introduce the 
polynomials {Q, (5) lj = 0, 1,2,. . , n} where 

Q, (0 = f’, y ( > 
so that the orthogonality relation (14), for example, 
takes the form 

In the approach described in this paper, a set of 
linearly independent functions {p,(x) l_j = 0, 1, 2, . . , 
n} are selected which possess the property of orthog- 
onality, that is 

2 A 
x Q,(i3Qj(t)dt=OforiZj 

s 
(20) 

0 

and 

s 
and the series solution to equation (1) takes the form 

+I 

p,(x)p,(x)dx=Ofori#j (14) 
--I y(5) = ,To tl/ Q, (5). (21) 

s +I 
There is one additional property of these orthogonal 

p, (xl* dx # 0. (15) polynomials which proves to be extremely useful in 
-I simplifying the method of solution of the regenerator 

problem. The orthogonality relation (20) is applicable 
for the case where i # j and wherej = 0. Since These functions {p,(x) lj = 0, 1, 2,. . , n} are poly- 

nomials of degree j of the independent variable x 
where - 1 < x < + 1. In addition, they possess the 
useful property that they can be defined in terms of a 
recurrence relationship of the form 

Pi+ 1 Cx) = (“,x + b,)P,(x) + cj- I PI- I tx) (16) 2 A 
X 

s 
Q;(r)dt = Ofori> 1. (22) o 

where pO(x) is a constant and p,(x) is a linear function 
of x. The particular functions we choose are the Leg- 
endre polynomials P,(x) which may be defined by the 
recurrence relationship, which can be readily used 
within a piece of software, 

An important parameter describing the overall per- 
formance of the regenerator is the thermal ratio, qREG. 
This is defined by 

p. (x) = 2j+1 
~xp,(X)-~+Pj-l(X) (17) 

? REG - (23) 
/+I 

J+l 

-A “(F(<)+F(A+l)d4. 
s 0 

with P,(x) = 1 and P,(x) = x. for the symmetric case. Using equation (5), this 
It can be shown that reduces to : 

PO(x) = Qo (5) = 1 

it follows that 
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1 
VlRCG = jj .r ” (2F(5) - 1) d<. (241 

I, 

lf we now replace F(t) by Y(g). we obtain 

1 A 

VREG = jj 

s 

(2 i a,Q,(O-l)df (25) 
0 ,=o 

where the last n terms within the summation disappear 
upon integration by virtue of the orthogonality prop- 
erty. In other words, equation (25) is greatly simplified 
and we are left with 

@a0 (20 (5) - 1) d5 = ; 

(26) 

It follows that the thermal ratio can be computed, 
knowing only the value of ~1~ and 

DREG =~@;*O-l). 127) 

We shall show later that an equally simple form of 
the thermal ratio can be found for the unsymmetric 
case. it is important to note that equation (27) can be 
applied both in the case of where a, is found by the 
method of Galerkin and in that where it is determined 
by the method of collocation. 

APPLICATION OF THE GAUERKIN METHOD FOR 
THE SYMMETRIC CASE 

We have indicated previously that the coefficients 
{C+ j k = 0, 1,2,. ‘ . . , rz) are determined by solving the 
equations 

s 
A a(‘r(5)) 4, (0 d5 = 0 (11) 
0 

forj=O, 1,2 ,..., n. Baclic [l] explains that, in so 
doing, we determine the values of {ak 1 k = 0, 1,2, . . , 
rz) in such a way that n(Y(<)) is minimised on the 
interval 0 < f < A. We now expand equation (11) and 
obtain 

h Ii 

s( ! 
c izOEj Q,(A-O+e-nQj(5) 

-+ 
J1 

K([---R)Q,(E)dE -1 Qr(r)dl=O (28) 
0 1 ) 

fori=O, 1,2 ,..., n. The order of the integration and 
the summation can be interchanged so that equation 
(28) is modified to become 

+ :K(;--C)Q,(&)d&)Q,(t,dr 

a is now determined 
by solving the set of linear equations 

Aa=h 112) 

where A is a square (n + 1) x (n + 1) matrix and h is a 
vector of order n + 1. It will be seen that the matrix A 
is given by 

A= Q,(A-O+e-"Q,(5) 

+ (30) 

for i,j=O, I, 2 ,...., n, while the vector h takes the 
form 

(31) 

for i = 0, 1,2,. , n. It can be shown for the Legendre 
polynomials that 

Q, (A-5) = (- lVQ,M 

Further, the property given by equation (18) becomes 

s h Qi CO2 dt = 4 & # 0. (321 
0 

These and the orthogonality properties of the poly- 
nomials {Ql (<)) lead to a good deal of simpli~cation 
of the elements of the matrix A. Indeed, the first two 
terms in the off-diagonal elements (where i #_I’) of the 
matrix, as shown in equation (30), are annihilated as 
a consequence of the {Q, ({)I being ~r~~~g~~u~. The 
calculation of the diagonal elements of A is facilitated 
by equation (32). It follows that 

A,, = 

(33) 

and for the diagonal elements of A, we have 

A 2 
A,,, = - - 2 2i+ 1 I<- l)-‘+e-“l 

+ K fi: - ~1 Qi (~1 dc: Qi (<? d<. (34) 

The elements of the vector h are similarly modified 
and thereby greatly simplified. In particular, 

/ri = Ofori> 1 (35) 

following equation (22). The top element of h is simply 

ho = 
s 

“&(t)d[= 
s 

‘d<=A. (36) 
0 0 
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SOME COMPUTATIONAL CONSIDERATIONS ple, for A = 1000 and II/A = 0.05, a polynomial of 

Although the introduction of the urthogo~l poly- 
degree 10 is required when using {e/j!/j = 0, 1, 

nomials enables the form of the matrix A, the vector 
2,. . . _J whereas a polynomial of degree 7 is needed 

h and the thermal ratio qREo to be greatly simplified, 
if the Legendre polynomials are used. 

it still remains the case that it is necessary to evaluate 
the integrals in equations (33) and (34), namely THE NON-SYMMETRIC CASE 

i\ i 

5 1s 
K(t -8) QjCE) d& 

I 
CA (5) d5 

A computational problem arises in the non-sym- 

0 0 metric case. Solution of equation (12) involves the 

for all the elements of the matrix A. Baclic [l] has 
solution of n-t 1 simultaneous equations. The 

suggested that the integral 
approach of Baclic [7j to equations (2) and (3) involve 
the solution of 2n + 2 equations, where the solution 

( 

s 

vector is a concatenation of the vectors a and 8, 
K(< - $2 dc: defined by equations (6) and (7). This is equivalent to 

0 the approach by Nahavandi and Weinstein 1121 to the 

can be computed easily by regarding the integral as a collocation method. This doubling of the number of 

convolution of the functions K (5 -8) and sJ. He equations results in the computational effort being 

proposes a recurrence formula whereby this integral multiplied by approximately eight. Willmott and 

can be evaluated. We have examined this strategy and Knight [9] have indicated how this problem might 

have found that is economical provided the ratio of be overcome for both the Galerkin and collocation 

the reduced length to the reduced period, A/II is large approaches to the integral equations (2) and (3). The 

(> 10) and A < 100. In other cases, the convergence of matrix method which they described is outlined below. 

Baclic’s recurrence formula is very slow. In an extreme 
case where A = 1000 and A/II = 0.01, almost 2000 
terms in the recurrence were required to realise con- THE MATRIX METHOD 

vergence. Certainly 100 terms are required, at least, Equation (2) can be re-written for the cold period 
for A = 100 for A/II < 10. in the pth cycle : 

This strategy, nevertheless, can be applied to the 
case where it is required to evaluate F’@) (5’) = ewn’ F@) (5’) + *’ K’ (E- {‘) p) (E) ds. 

s 

i s 5’ 
K(~--E)Q,@)~E 

0 (37) 

simply by decomposing the Legendre polynomial into Inserting expansions (6) and (7) and denoting the 

its component parts and integrating term by term. For vectors for the pth cycle by a@) and fi@’ yields 

example, 

P2(x) = :(3x*-l), P,(x) = 1(5x3 -3x)and 
,to fly’ 4, (0 = i a:P’ {emrr 4j (t') 

,=o 

P4(X) =;(35x4-30x~+3) 
+ ~~~~-~~)~j~~~d~ . 

s 
(38) 

r 1 

can be converted into polynomials in 5 using the 
Application of Galerkin’s method to equation (38) 

change of variable 
yields a matrix equation, namely 

25-A 
cD’B@’ = Pa@’ 139) 

X=It. where @’ and r’ are (0. .PI) x (0. .n) matrices. These are 

In the Appendix, Arthurs and Willmott offer another 
defined by 

approach. Alternatively, the integrals can be evalu- A 

ated by numerical quadrature. CIV= 4, (5’) 4i (5’) dt’ (40) 
We have implemented the Galerkin method for the [S 0 I 

symmetric case using the modified Legendre poly- h 

nomials {Qj (5) 1 j = 0, 1, 2, . . . . .) and the trial func- r’= 
ii i 

e-“‘cPi(t’)+ XK’(e-r’) 

tions {t’ij!lj = 0, 1,2,. . . .} suggested by Baclic. Our 
0 s i 

results suggest that the number of terms required in 
Y(t) for five figure accuracy in the thermal ratio, qaEo, x 4, (4 dr}$i (5’) dE’ 1. (41) 

using the Q,(C) polynomials is neuer greater than the 
number needed when using the Baclic trial functions. Upon setting 4i ((‘) = Qi (<‘), the matrix @’ is greatly 
Indeed, for A > 100 and A/II < 0.1, the use of the simplified and becomes diagonal in form as a conse- 
Legendre polynomials is more economical. For exam- quence of the orthogonatity of the functions 
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{Q’(t’) 1 i = 0, 1,2,. . .}. The diagonal elements take 
the form 

I 
q, = R _z 

2 22+1 
fori=0.1,2 ,...., n. (42) 

The matrix I’ is simplified in a similar manner. The 
olI-diagona! elements assume the form 

r:,, = Q,(<‘)d<’ fori#j 

(43) 

The off-diagonal elements of I take the form 

A i 
r,,, = 

11s 
KC5 - 6) Q, 6) ds Qi (5) d5 (53) 

0 0 

while the diagonal elements are while the diagonal elements are : 

Q,(c’)d<’ fori=0,1,2 ,...., n. (44) 

The vector /I@’ can be computed from a@’ using 

p(P) = @‘- 1 l-’ a(P), (45) 

This involves only matrix multiplications since CD’ is 
diagonal, see equation (42). 

Equation (3) for the hot period in the pth cycle is 
developed in a similar manner. It is somewhat re- 
arranged to yield 

F’P+‘)(5) =e-“b-)(0+ ‘K(&&)FI@)(E)dE I; 0 

+{ I-e-n-[iK(<-s)da]. (46) 

Substituting again expansions (6) and (7), this time 
into equation (46) generates 

i a:p+I) 

,=o 

(47) 

Application of Galerkin transformation to equation 
(47) produces an equation in matrix form which is 

@a@+” = rfi@‘+[ (48) 

A 
@= 

[s 
4, (5) ~~ (5) dt (49) 

Cl 1 
1-= ec” 4, (5) 

1 I 4,(Od5 (50) 

The vector [ = [lo, [,, c2, . , in]’ is defined by 

Again, setting 4, (5) = Q, (<), the matrix CD becomes 
diagonal in form with 

@,.,= .A ---fori=0,1,2 ,..... n. 
2r+l (52) 

K(5 -a) Qs (4 dc Q, (0 d5. 

(54) 

The elements of the vector < take the modified form : 

(‘,= -[{/IK(t-s)ds]Qi(E)dCrori>O (55a) 

co = A(l-e-“)- A 
sJ* 

‘K(<-s)dsd[. (55b) 
0 0 

Equation (48) can now be re-arranged to give 

(56) 

Equation (57) is obtained by the substitution for /I@’ 
from equation (45) ; it takes the form 

ati+r) = (1-1 I@‘-1 I’a@)+@Dl i, (57) 

If CD- ‘I’@‘-‘I’ is denoted by M and W’ < by v, then 
equation (57) becomes 

aCj+o = Ma’P’+v, (58) 

At cyclic equilibrium, a(P) = a@+ I) = a in which case, 
equation (58) takes the form 

(I-M)a = v 

and the vector a located by solving the set of n+ 1 
linear equations, namely 

a = (I--M))’ v. (59) 

Once a has been found, the vector p is obtained from 

B = @‘-I T’a. (60) 

The elegance of this approach lies in the fact that the 
matrices @ and W are diagonal and that therefore the 
matrix A4 and the vector v can be formed using matrix 
multiplications alone. Pre-multiplication by a diag- 
onal matrix such as CD-’ is a trivial operation. It is 
only in the calculation of the vector a using equation 
(59) that it is necessary to solve a set of simultaneous 
linear equations. Again, the computation of the vector 
/I employing equation (60) involves only matrix mul- 
tiplications. 

These properties, which are a consequence of the 
orthogonality of the functions {Q, (01 i = 0, 1,2, .), 
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added to the fact that equation (59) involves the solu- 
tion of only n + 1 instead of 2n + 2 equations, makes 
this development of the Galerkin method particularly 
economical. 

This Galerkin procedure described above represents 
a development of the matrix approach to regenerator 
simulations suggested recently by Willmott et al. [13] 
applied initially to the Jliffe method for solving equa- 
tions (2) and (3) and subsequently by Willmott and 
Knight [9] to the method of collocation for the series 
solution of these same equations. This approach 
extends the work of Baclic and Dragutimoric [7] 
which encompasses the non-symmetric problem. The 
method embodied in this development represents an 
application of the Fast Galerkin Algorithm which is 
described by Delves and Mohamed [14]. 

THERMAL RATIO 

The hot period thermal ratio is defined by the equa- 
tion 

while the cold period thermal ratio is given by 

The cold period q&o is modified upon substitution of 
the series solution of the integral equations, namely : 

Ajr 1 fh n 

As in equation (25), the last n terms within each sum- 
mation are annihilated as a consequence of the orthog- 
onality of the functions { Qi (t)li = 0, 1,2, . . , n}. 

Equation (62) is immediately modified to take the 
form 

A/r 1 r~ 
rlkEG = g/ ; 1 J ~0 Qo (5) d5 o 

- +, r’ Bo Qo (5’) d5’ I (63) 
0 

and 

The hot period qREF is developed in exactly the same 
way. It follows that the thermal ratios can be cal- 
culated easily using 

VREG - -~@0-8oh ?kEG = =, %o-PO) (65) 

and this corresponds to equation (27) which applies 
to the symmetric case. 

CONCLUDING REMARKS 

The use of the Legendre orthogonal polynomials 
greatly simplifies the Galerkin series solution of the 
integral equations (l)-(3). This in turn leads to econ- 
omy and robustness in the method. 

This becomes especially apparent in the matrix 
treatment of the non-symmetric case where solutions 
can be obtained by solving just one set of n+ 1 sim- 
ultaneous equations (59), whereas earlier treatments 
have involved the solution of 2n + 2 equations. Some 
of the matrices are reduced to diagonal form as a 
consequence of the orrhogonality property of the 
polynomials, thereby rendering the calculations even 
more economical. 

Robustness is realised since the [ -- 1, + l] range of 
the polynomials {Qi (c)} closely contains the [0, + l] 
range of the dimensionless temperature distributions 
F(t) and F’(<‘). In this way, the generation of large 
matrix elements is avoided, a problem only partially 
overcome in earlier work in this area. 

It seems possible that this work might be extended 
to the use of other orthogonal polynomials although 
our early numerical experiments appear to suggest 
that any promise seemingly held out by the Chebyshev 
polynomials, for example, may not be realised. Fur- 
ther work in this area might be worthwhile although, 
at this juncture, it appears that the Legendre poly- 
nomials offer the greatest economy, speed and accu- 
racy. 
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APPENDIX 

A. M. ARTHURSt and A. J. WILLMOTT 

CALCULATION OF THE DOUBLE INTEGRAL IN 
EQUATIONS (33) AND (34) 

The integral, which we denote by C,., ( = A,,, for i #J), 

iz i 
c,,, = 

i ii 
K(~--E) Q,W ds 

1 
Qi(3 dt (Al) 

I, 0 

can be simplified if we try to decouple the kernel K(<--E) 
from the orthogonal functions Q$ (5). In essence, we create a 
new inner integral and then a new outer integral, both of 
which can be found analytically. Since the convolution inte- 
gral is symmetric in arguments, equation (Al) can be rewrit- 
ten as 

TDepartment of Mathematics, University of York, 
Heslington, York YOI SDD, U.K. 

from which it follows, if we change the order of’the integrutiorl. 
that 

.h n 
C,, = 

i is 
Qi (0 Q, (r--F.) dt 

1 
K(c) de. (A3) 

0 6 

In equation (A3), the inner integral involves only a product 
of two Legendre polynomials. We can denote this integral as 
follows : 

L.,f4 = 
s 

‘Q,(~)Q;(~-~)d~ (A4) 
P 

for 0 c E < A. There are special cases, namely when E = 0 
and when c: = A. In the first, the integral (A4) becomes 

where 6,., is the Kronecker delta equal to 1 when i = j and 
equal to zero for i #,j. Clearly, also, the integral is zero in 
the second case where c: = A. More generally, the integral 
I(,i(~) is a polynomial in E of degree i+j+ 1 and can be 
evaluated directly. 

The integral (A4) can thus be written 

r+,+ 1 

We retain the use of the polynomials Qk (a) to take advantage 
of the [ - I, + I] range occupied by them. The integral (A3) 
then becomes 

This integral might be computed numerically, or, alter- 
natively, it is possible to express K(E) as a power series in 
(&IT) multiplied by e+. This leaves the integral (A6) as an 
infinite series 

Ci,i = i bk 
i 

n Qk (e)e-“da. 
b=O 0 

(A7) 

The integral in (A7) can be found analytically and we are 
left with an infinite series for A,,, which, hopefully, is rapidly 
convergent. Examination of this expression will be the sub- 
ject of future work. 


